Find the number of ways of selecting 8 subjects... - JAMB Mathematics 2001 Question
Find the number of ways of selecting 8 subjects from 12 subjects for an examination
A
490
B
495
C
496
D
498
correct option: b
Combination is the number (n) of ways of selecting a number of (m) of objects from n
\(^{12}C_{8}\frac{12!}{8!(12-8)!}\=\frac{12!}{8!4!}\\frac{(12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1)}{8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}\After\hspace{1mm} cancelling \hspace{1mm}out \hspace{1mm}we\hspace{1mm} have\11\times 5\times 9 = 495 \)
\(^{12}C_{8}\frac{12!}{8!(12-8)!}\=\frac{12!}{8!4!}\\frac{(12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1)}{8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}\After\hspace{1mm} cancelling \hspace{1mm}out \hspace{1mm}we\hspace{1mm} have\11\times 5\times 9 = 495 \)
Please share this, thanks:
Add your answer
No responses